DI-DRO ADVANCED FORMING SYSTEMS

WE PARTNER WITH YOU

We partner with you to provide force-generating products and solutions to lower your costs and increase your productivity in the forming of manufactured parts.

TABLE OF CONTENTS

Introduction2-3
Features and Benefits4
How Di-Dro Works5
Case Studies6-7
Component Descriptions8
Dimensional Information: Control Center9
Dimensional Information: Cylinders10-11
Hose & Fittings & Accessories12
Custom Di-Dro Advanced Forming Systems13
How to Get Started14-15
Short Form
Long Form with Equations

A HISTORY OF INNOVATION

HYSON Metal Forming Solutions designed and manufactured the first pneumatic die cylinder, rated at 80 psi, in 1939. From that auspicious start, we continued to expand the technology of force to answer customer needs, developing the first nitro-gen gas spring in 1964 and delivering the first nitrogen manifold system that same year. A recognized leader in nitrogen gas systems, HYSON added hydrau-lic systems with the acquisition of the Di-Dro Advanced Forming System which combines high force in a small space and no pressure rise. Since the acquisition in 2007, HYSON engineers have enhanced and redesigned the product to include both modular and custom-engineered systems with a maximum force of 4000 psi.

HYSON brands, including Nitro-Dyne® and Tanker®, are well-respected throughout the industry, and our ISO 9001-2008 and PED certifications attest to our ongoing commitment to the highest standards of quality.

HYSON is backed by the financial strength and long history of Barnes Group Inc. (NYSE:B), a diversified global manufacturer and logistical services company focused on providing precision component manufacturing and operating service support. Founded in 1857, Barnes Group Inc. employs approximately 5,000 worldwide.

SOLUTIONS DESIGNED AROUND YOU

HYSON remains at the forefront of technical innovation, developing forcegenerating products and services across a wide range of industries and applications. Our success lies with our ability to establish long-term relationships and to offer tailored solutions to meet customer needs.

Our strength stems from working closely with you to create value and to provide support from design and production through installation and service. We have the experience and expertise to do just that, and our engineering team and sales and service personnel are ready for your call.

-2011

Modular Di-Dro Advanced Forming System

- 2007

Di-Dro Advanced Forming System

4000 psi

- 1985

Tanker® High-Performance Self-Contained Nitrogen Gas Spring

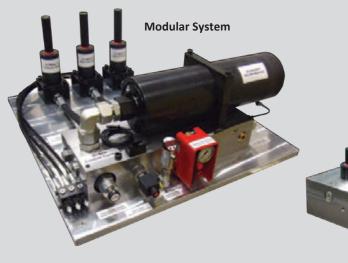
2175 psi

- 1972

Super Nitro-Dyne® Nitrogen Manifold

1500/2000 psi

-1960


Nitro-Dyne® Nitrogen Manifold

650 psi

- 1939

Pneumatic Die Cylinder

80 psi

FORCE-GENERATING SOLUTIONS

HYSON offers a complete line of modular Di-Dro Advanced Forming Systems as well as custom-designed systems.

FEATURES & BENEFITS

HIGH FORCE HYDRAULIC SYSTEM

High force produced in a small footprint, up to 125.5 kN/14.1 tons with a single cylinder.

DELAYED RETURN

Cylinders delay in the retracted position to prevent parts from being inverted or interfering with automation.

LOW CONTACT AND RETURN FORCE

A soft hit and very low return force decrease press wear and extend press life.

CONSTANT FORCE

No pressure rise provides constant force throughout the stroke for better control of part quality.

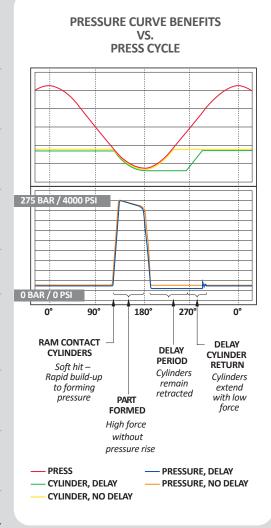
SYSTEM VERSATILITY

Used in both upper and lower operations.

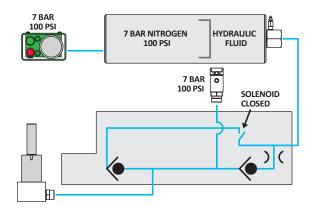
CYLINDER FLEXIBILITY

When space is a constraint, the modular system provides cylinders in individual bases that can be hosed to a control center with hose lengths as long as 2 m/80 in.

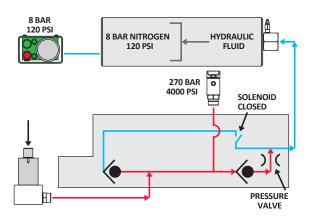
BORE SEAL CYLINDERS

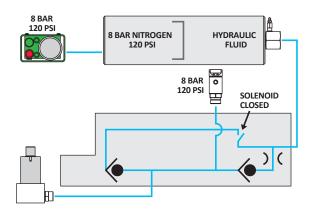

Corrosion-resistant cylinders withstand contamination and leakage from rod damage for longer performance life.

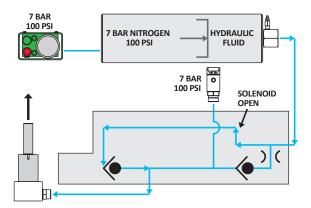
SELF-ALIGNING PISTON RODS


Cylinders accept some die movement and a degree of sideload without affecting performance.

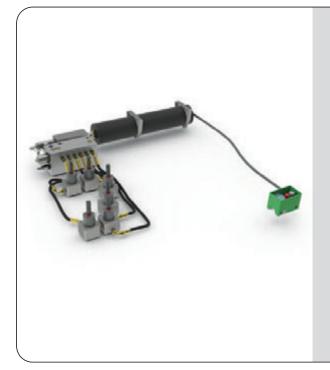
SELF-CONTAINED OPTION


System provided fully filled, bled and ready for installation.


HOW IT WORKS


Cycle begins with system at low pressure (7 bar/100 psi) and solenoid closed.

When the cylinder is compressed, the pressure valve creates forming force. Fluid from the cylinder moves to the accumulator. High pressure occurs only while the cylinder is being compressed.



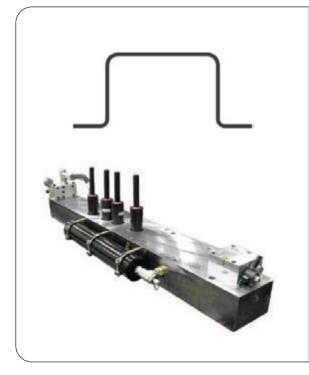
Cylinder is delayed in the retracted position as long as the solenoid is closed.

The solenoid opens and nitrogen pressure in the accumulator pushes fluid back to the cylinder which returns to the raised position. The system is reset and ready for the next cycle.

CASE STUDIES

APPLICATION: Automotive stampings.

CHALLENGE: Delay found to be required


for this application. Space constraints occurred because die was designed for use with gas springs.

SOLUTION: In-die modular hosed

system with delay.

ROI: Di-Dro retrofitted in original

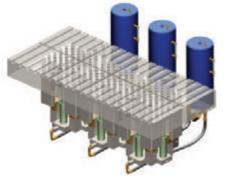
die, so no new die required.

APPLICATION: Vehicle frame component

with hat-shaped cross

section.

CHALLENGE: Deep draw resulted in


part deformation.

SOLUTION: In-die upper system

with delay.

ROI: Improved part quality.

APPLICATION: Heavy metal stampings.

CHALLENGE: Air cushions needed repair

or replacement.

SOLUTION: In-press bolster cushion

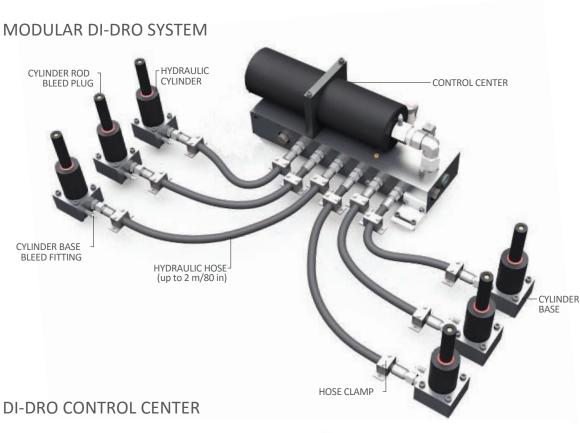
with delay.

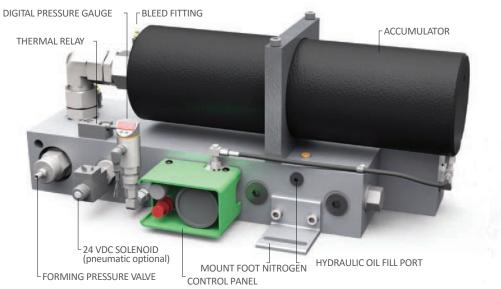
Significant cost savings ROI:

on initial investment.

APPLICATION: Stainless steel stove top.

CHALLENGE: Required programmable cushion for the die.

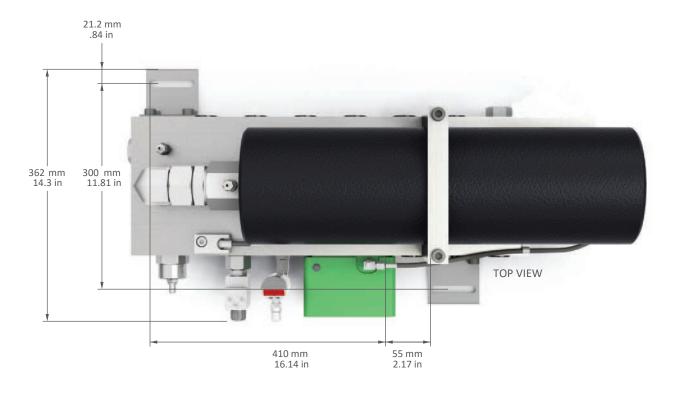

In-die lower deep draw SOLUTION:

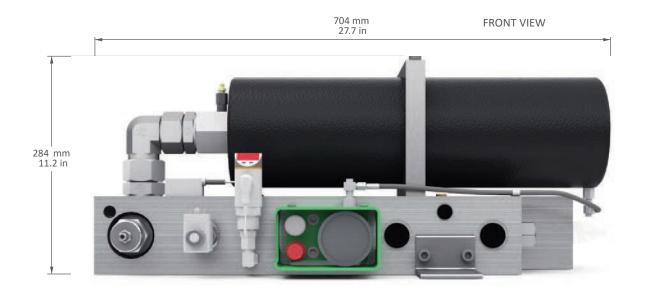

with delay.

Eliminated need and cost ROI:

for programmable cushion.

COMPONENTS

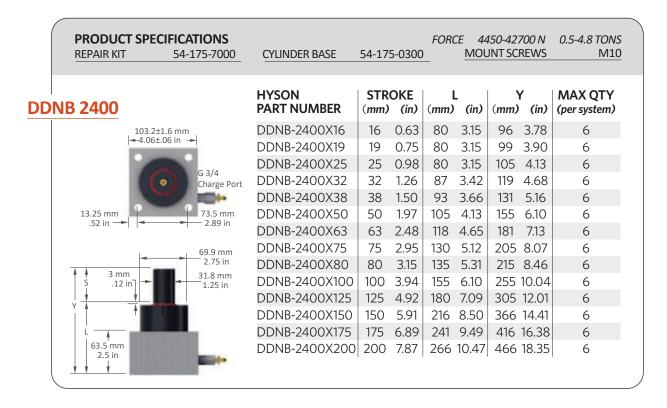



MODULAR DI-DRO SYSTEM CONFIGURATIONS

- Standard (with Delay)
- Low Pressure System
- Cooling

- Force-Only System (No Delay)
- Pneumatic Delay

DIMENSIONAL INFORMATION: CONTROL CENTER



DIMENSIONAL INFORMATION: CYLINDERS

PRESSURE MEDIUM	Hydraulic Oil
MAXIMUM PRESSURE	275 bar/4000 psi
MINIMUM PRESSURE	25 bar/360 psi
MAX. OPERATING TEMP.MAX.	93°C/200°F
PISTON ROD VELOCITY	96 m/min/315 ft/min

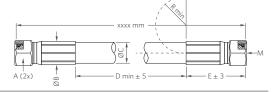
MAX. UTILIZED STROKE	100%
MAX. STROKES PER MINUTE	Dependant on Heat
BASE BLEED FITTING	4014007
CYLINDER ROD BLEED PLUG	NF-771-3-V-ZLG

PRODUCT SPECIFICATIONS REPAIR KIT 54-112-7000	CYLINDER BASE	54-11	2-0300	FOR(780-177 JNT SC		0.2-2.0 TONS M8
DNB 1000	HYSON PART NUMBER	STR		(mm)	(in)	\ (mm)		MAX QTY (per system)
77.8±1.6 mm	DDNB-1000X13	13	0.51	63	2.48	76	2.99	6
 3.06±.06 in →	DDNB-1000X16	16	0.63	63	2.48	79	3.11	6
	DDNB-1000X19	19	0.75	63	2.48	82	3.23	6
G 3/4 Charge Port	DDNB-1000X25	25	0.98	63	2.48	88	3.46	6
	DDNB-1000X32	32	1.26	70	2.76	102	4.02	6
9.25 mm .36 in - 2.22 in	DDNB-1000X38	38	1.50	76	2.99	114	4.49	6
.30 III — 2.22 III	DDNB-1000X50	50	1.97	88	3.46	138	5.43	6
1.98 in	DDNB-1000X63	63	2.48	101	3.98	164	6.46	6
3 mm 19.1 mm	DDNB-1000X75	75	2.95	113	4.45	188	7.40	6
.12 in .75 in	DDNB-1000X80	80	3.15	118	4.65	198	7.80	6
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	DDNB-1000X100	100	3.94	138	5.43	238	9.37	6
	DDNB-1000X125	125	4.92	163	6.42	288	11.34	6
1	DDNB-1000X150	150	5.91	201	7.91	351	13.82	6
50.8 mm 2.0 in	DDNB-1000X175	175	6.89	226	8.90	401	15.79	6
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	DDNB-1000X200	200	7.87	251	9.88	451	17.76	6

PRODUCT SPECIFICATIONS FORCE 7120-78290 N 0.8-8.8 TONS **MOUNT SCREWS** REPAIR KIT 54-238-7000 CYLINDER BASE 54-238-0300 M12 Υ **HYSON STROKE** L **MAX OTY DDNB 4200 PART NUMBER** (mm) (in) (mm) (in) (mm) (in) (per system) 122.3±1.6 mm |**-**4.81±.06 in **-**► DDNB-4200X16 16 0.63 89 3.50 105 4.13 6 DDNB-4200X19 19 0.75 92 3.62 111 6 4.37 DDNB-4200X25 25 0.98 98 3.86 123 4.84 6 G 3/4 105 4.13 137 5.39 DDNB-4200X32 32 1.26 6 Charge Port DDNB-4200X38 38 1.50 111 4.37 149 5.87 6 92 mm DDNB-4200X50 1.97 123 4.84 173 6.81 6 14 mm 50 .55 in 3.62 in DDNB-4200X63 2.48 136 5.35 199 7.83 63 6 2.95 75 148 5.83 90.5 mm DDNB-4200X75 223 8.78 6 3.56 in DDNB-4200X80 80 3.15 153 6.02 233 9.17 6 47.6 mm 3 mm DDNB-4200X100 100 3.94 173 6.81 273 10.75 6 .12 in 1.87 in DDNB-4200X125 125 4.92 198 7.79 5 323 12.72 DDNB-4200X150 150 5.91 236 9.29 4 386 15.20 261 10.28 DDNB-4200X175 175 6.89 4 436 17.16 DDNB-4200X200 200 3 69.9 mm 7.87 286 11.26 486 19.13 2.75 in 3 DDNB-4200X225 225 8.86 311 12.24 536 21.10

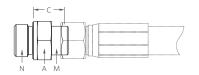
PRODUCT SPECIFICA REPAIR KIT 54-30	TIONS 00-7000	CYLINDER BASE 54	-300-0	300		RCE IS MOL		-12544 REWS	ON 1.3-14.1 M12
DNB 6600		HYSON PART NUMBER	STRO (mm)		(<i>mm</i>)	(in)	(mm)		MAX QTY (per system)
141.3±1.6 mm	1	DDNB-6600X16	16	0.63	104	4.09	120	4.72	6
<- 5.56±.06 in →	4	DDNB-6600X19	19	0.75	107	4.21	126	4.96	6
	G 3/4	DDNB-6600X25	25	0.98	113	4.45	138	5.43	6
((•))	Charge Port	DDNB-6600X32	32	1.26	120	4.72	152	5.98	6
	100	DDNB-6600X38	38	1.50	126	4.96	164	6.46	6
	109.5 mm	DDNB-6600X50	50	1.97	138	5.43	188	7.40	6
1.20 in →	— 4.31 in	DDNB-6600X63	63	2.48	151	5.94	214	8.42	6
		DDNB-6600X75	75	2.95	163	6.42	238	9.37	6
	109.6 mm 4.31 in	DDNB-6600X80	80	3.15	168	6.61	248	9.76	5
4 A 3 mm	4.31 In 63.5 mm	DDNB-6600X100	100	3.94	188	7.40	288	11.34	4
\$.12 in	2.50 in	DDNB-6600X125	125	4.92	213	8.39	338	13.31	3
Y A		DDNB-6600X150	150	5.91	251	9.88	401	15.79	3
		DDNB-6600X175	175	6.89	276	10.87	451	17.76	2
76.2 mm		DDNB-6600X200	200	7.87	301	11.85	501	19.72	2
3.0 in	-	DDNB-6600X225	225	8.86	326	12.83	551	21.69	2

HOSE & FITTINGS & ACCESSORIES

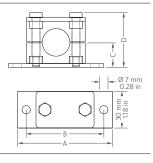

Select the correct hose and fittings for optimum performance for your modular Di-Dro system.

HOSE

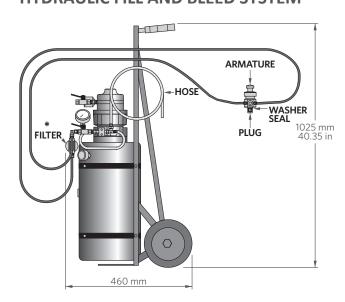
MAXIMUM WORKING PRESSURE 280 bar/4060 psi MINIMUM BURST PRESSURE 1120 bar/16240 psi


HYSON PART NUMBER		THREAD	(mm)		(<i>mm</i>)	'	(mm,	C	Dr (mm)	min	(mm	E) (R (mm	min)
30 214 54-xxxx														
30 214 55-xxxx	¾-in.	M30x2	36	1.42	35	1.38	31	1.22	50	1.97	72	2.83	120	4.72

ADDITIONAL PARKER SPECIFICATIONS						
PARKER PART NUMBER	HOSE SIZE	INNER Ø (mm) (OUTER Ø (mm) (HOSE FITTING PART NUMBER		
721TC-8	½-in.	12.5 0.49	24 0.94	1C971-16-8		
721TC-12	3⁄4-in.	19 0.75	31 1.22	1C971-20-12		


HOSE FITTING

HYSON PART NUMBER	HOSE SIZE	THREAD M		A (mm) (C (mm) (
504321	½-in.	M24x1.5	G ½	27 1.06	19 0.75
504322	½-in.	M24x1.5	G ¾	32 1.26	21 0.83
504324	¾-in.	M30X2	G ¾	32 1.26	21 0.83



HOSE CLAMP

HYSON PART NUMBER	HOSE SIZE	A (mm) (B (mm) (C (mm) (D (mm)
504614	½-in.	78 3.07	64 2.52	20 0.79	44 1.73
504615	³⁄₄-in.	87 3.43	73 2.87	24 0.94	51 2.01

HYDRAULIC FILL AND BLEED SYSTEM

Required to properly fill the Di-Dro unit with oil and remove air from the system. Trapped air causes low forming pressure and a lack of delay.

HYSON PART NUMBER 3017075

OIL FLOW	2.4 L/M	N AT 1500 RPM
MAX. OIL PRES	SURE .	55 BAR/800 PSI
TANK VOLUME		18 LITERS
OIL FILTER		10 µm
AIR PRESSURE	5-7	BAR/73-100 PSI

^{*}Replacement Filter 505763


CUSTOM DI-DRO ADVANCED FORMING SYSTEMS

While our modular Di-Dro system is the solution for most applications, HYSON also offers custom-engineered Di-Dro systems when needed.

Consider a custom-engineered system when the application requires:

- A large number of cylinders or pressure points
- Very high force
- Cylinders integrated into the die shoe
- A ram cushion with delay capability
- A bolster cushion with delay capability

The Advanced Engineered Systems Group at HYSON is ready to partner with you to develop an integrated solution for your forming needs.

HOW TO GET STARTED

To provide the system to fit your needs, complete the required short form. You may choose to complete the long form which includes equations that will allow you to select your system components. *Email to Orders@HysonSolutions.com or fax to 440-526-6807. For more information or to request these forms in English measures, call toll-free 800-876-4976 or 440-526-5900.*

SHORT FORM (required)	
1. Number of pressure points	5a. Maximum ram speed
2. Total force required (N)	during work stroke (m/s)
3. Cylinder work stroke (mm)	5b. Mechanical press stroke length (mm)
4. Parts per minute (ppm)	6. Maximum anticipated press speed in strokes per minute (spm)

QUATIONS				
PRESSURE POINT FORCE (CYLI		CTION)		
$\frac{\text{total force required (N)}}{\text{number of pressure points}} = \frac{1}{1000}$	(N	PART NUMBER	FORCE RANGE	PISTON AREA
Notes: Choose a cylinder size (see right calculated tonnage is within the cylind mid-range is preferred. Smaller cylinder	nt) where the der's range, near	□ DDNB-1000x*** □ DDNB-2400x*** □ DDNB-4200x*** □ DDNB-6600x***	1780-17790 N 4450-42700 N 7120-78290 N 11565-125440 N	641 mm ² 1552 mm ² 2858 mm ² 4560 mm ²
2. PR SURE $\frac{\text{total force required (N) x 10}}{\text{cyl. qty. x piston area (mm}^2)} = -$	bar			
Notes: Pressure MUST be less than 27		ocrease quantity of cylinders	s. 2. Increase size of	cylinders.
cyl. qty. x piston area (mm²) x spi 318310 Notes: System fluid flow rate MUST b		i. IF NOT: 1. Reduce ram sp 2. Use smaller cy 3. Use multiple s	eed or strokes per mi vlinders at higher pres	nute. ssure.
4. INDIVIDUAL CYLINDER FLUID		SE SIZE SELECTION		
system fluid flow rate (Lpm) = _ cylinder quantity	Lp	If more than 132 Lpr 1. Reduce ram spe 2. Use smaller cyl 3. Use additional	32 Lpm, use the ¾-in m: eed or strokes per mir linders at higher pres.	ch hose only. nute. sure.
5. HEAT GENERATION total force (N) x work stroke (mr	m) x parts per mir	nute (nnm)	kW	
60,000,	000	<u> </u>	KVV	

LONG FORM (continued)

COMPONENT SELECTION

CONTROL CENTER PART NUMBERS:

DD-CNTRL ASSY 1	Standard	70-275 bar with 24 VDC Delay
DD-CNTRL ASSY 3	No Delay	70-275 bar
DD-CNTRL ASSY 4	Low Pressure	25-70 bar with 24 VDC Delay
DD-CNTRL ASSY 5	Pneumatic Delay	70-275 bar with Air-Operated Delay Valve
DD-CNTRL ASSY 6	Cooling	70-275 bar with Oil Cooling Circuit

DETERMINE CYLINDER PART NUMBER AND QUANTITY:

1. Use cylinder size (Equation 1 - 1000, 2400, 4200, 6600)

Cylinder fluid flow rate (Equation 4) must be less than 57 Lpm for DDNB-1000.

Cylinder fluid flow rate (Equation 4) must be less than 132 Lpm for DDNB-2400, 4200 and 6600.

2. Stroke lengths range from 13 mm to 225 mm. See pages 10-11 for details.

	PART NUMB	ER
DDNB-	X	
	cylinder size	stroke
(example: DDNB-2400 x 50)		

PART NUMBER	
QUANTITY	

DETERMINE HOSE PART NUMBER AND QUANTITY:

- 1. Use hose 30 214 54-xxxx if cylinder fluid flow rate (Equation 4) is less than 57 Lpm.
- 2. Use hose 30 214 55-xxxx if cylinder fluid flow rate (Equation 4) is 57-132 Lpm.
- 3. Maximum hose length is 2000 mm.
- 4. Use up to six (6) hose sizes per system. Note length and quantity for each hose required.
- 5. See page 12 for details.

PART NUMBER	
QUANTITY	

DETERMINE FITTING PART NUMBER AND QUANTITY:

- 1. Two fittings are required per cylinder (one for the cylinder, one for the control center).
- 2. For DDNB-1000 cylinders:

4. See page 12 for details.

- (1) 504321 and (1) 504322.
- 3. For DDNB-2400, 4200 and 6600 cylinders:
 - (2) 504322 or (2) 504324.

PART NUMBER _	
QUANTITY _	

DETERMINE HOSE CLAMP PART NUMBER AND QUANTITY:

- 1. Use at least two (2) hose clamps per hose, positioning one near the cylinder and the other near the control center.
- 2. Use 504614 for ½-in. ID hose.
- 3. Use 504615 for ³/₄-in ID hose.
- 4. See page 12 for details.

PART NUMBER.	
QUANTITY .	

www.HysonSolutions.com

E-mail: Orders@HysonSolutions.com